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SUMMARY

In this paper, we reconsider the problem of fully developed natural convection heat and mass transfer
of a micropolar fluid in a vertical channel with asymmetric wall temperatures and concentrations. The
resulting boundary-value problem is solved analytically by the homotopy analysis method. The accuracy
of the present solution is found to be in excellent agreement with the solutions of Cheng (Int. Commun.
Heat Mass Transfer 2006; 33:627–635). Copyright q 2008 John Wiley & Sons, Ltd.

Received 18 May 2008; Revised 6 August 2008; Accepted 8 August 2008

KEY WORDS: heat and mass transfer; micropolar fluid; homotopy analysis method

1. INTRODUCTION

The phenomenon of convective heat and mass transfer has been intensively investigated due to
many industrial applications, such as air conditioning of a room, material processing, cooling of
nuclear reactors and many other practical situations. The natural convection heat transfer of liquid
metals (with additives/suspensions) in a confined enclosure is considered as an important problem
to passive cooling system. Fluids with additives/suspensions are considered as non-Newtonian,
which can be fully described by the theory of micropolar fluids first developed by Erigen [1].
Chamkha et al. [2] were the first to study the fully developed free convection of a micropolar
fluid in a vertical channel. This study was further extended by Cheng [3] to include mass transfer.
The solutions to the boundary-value problems in [2, 3] can be given in closed-forms. However, it
would be difficult to find closed-form solution for complex problems.
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The purpose of this paper is to present an accurate numerical solution of the boundary-value
problem given in [3] using the analytic homotopy analysis method (HAM) first developed by
Liao [4]. This method has been successfully applied to many non-linear problems, cf. [5–18].
Numerical results are presented graphically and are found to be in excellent agreement with the
solutions of Cheng [3].

2. BASIC EQUATIONS

Consider the free convection of a micropolar fluid between two vertical plates, the space between
the plates being b. The flow is assumed laminar, steady and fully developed, i.e. the transverse
velocity is zero. It is also assumed that the walls are heated uniformly, but their temperatures may
be different resulting in an asymmetric heating situation. The dimensionless governing equations
are [3]:
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subject to the boundary conditions

U (0)=0, H(0)=0, �(0)=1, �(0)=1 (5)

U (1)=0, H(1)=0, �(1)=m, �(1)=n (6)

where U is the dimensionless vertical velocity component, � the dimensionless temperature, H the
dimensionless microrotation, � the dimensionless concentration, Y the dimensionless transverse
coordinate, m the wall temperature ratio, n the wall concentration ratio and B and R are the
material parameters.

Solving Equations (3) and (4) subject to boundary conditions (5) and (6) give the dimensionless
temperature and concentration as

�=(m−1)Y +1 (7)

�=(n−1)Y +1 (8)

Now substituting (7) and (8) into (1) and rewriting (2), then we have
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subject to the boundary conditions

U (0)=0, H(0)=0 (11)

U (1)=0, H(1)=0 (12)

3. SOLUTION BY HAM

In this section, we apply the HAM to solve system (9)–(12). We assume that the solutions of U (Y )

and H(Y ) can be expressed by a set of base functions

{Yn|n=0,1,2, . . .}
in the following forms:

U (Y )=
+∞∑
n=0

anY
n, H(Y )=

+∞∑
n=0

bnY
n (13)

where an and bn are coefficients. This provides us with the first rule of solution expression of
(9)–(12). Under the rule of solution expression and according to the boundary conditions (11) and
(12), it is straightforward to choose

U0(Y )=H0(Y )=0

as the initial boundary approximations of U (Y ) and H(Y ), and to choose the auxiliary linear
operator

L[�i (Y ;q)]= �2�i (Y ;q)

�Y 2
, i=1,2

with the property

L[C1,i +YC2,i ]=0

where Ci (i=1,2) are constants of integration. The system of non-linear operators in HAM for
the present problem is as follows:

N1[�i (Y ;q)] = �2�1(Y ;q)

�Y 2
+ R

1+R

��2(Y ;q)

�Y

+ 1

1+R
[(m−1)Y +1)−N ((n−1)Y +1]

N2[�i (Y ;q)]= �2�2(Y ;q)

�Y 2
− 2BR

2+R

(
2�2(Y ;q)+ ��1(Y ;q)

�Y

)

Using the above definition, we construct the zeroth-order deformation equation

(1−q)L[�1(Y ;q)−U0(Y )]=qh̄N1[�i (Y ;q)] (14)

(1−q)L[�2(Y ;q)−H0(Y )]=qh̄N2[�i (Y ;q)] (15)
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Obviously, when q=0 and 1,

�1(Y ;0)=U0(Y ), �1(t;1)=U (Y )

�2(Y ;0)=H0(Y ), �2(t;1)=H(Y )

Therefore, as the embedding parameter q increases from 0 to 1, �1(Y ;q) and �2(Y ;q) vary
from the initial guesses, U0(Y ) and H0(Y ), to the solutions, U (Y ) and H(Y ). Expanding �1(Y,q)

and �2(Y,q) in Taylor series with respect to q one has

�1(Y ;q)=U0(Y )+
+∞∑
m=1

Um(Y )qm (16)

�2(Y ;q)=H0(Y )+
+∞∑
m=1

Hm(Y )qm (17)

where

Um(Y )= 1

m!
�m�1(Y ;q)

�qm

∣∣∣∣
q=0

Hm(Y )= 1

m!
�m�2(Y ;q)

�qm

∣∣∣∣
q=0

Now define the vectors

Un ={U0(Y ),U1(Y ), . . . ,Un(Y )}
Hn ={H0(Y ),H1(Y ), . . . ,Hn(Y )}

Differentiating the zeroth-order deformation equations (14) and (15) m times with respect to q ,
and finally dividing by m!, we get the mth-order deformation equations as

L[Um(Y )−�mUm−1(Y )]= h̄ Rm(Um) (18)

L[Hm(Y )−�mHm−1(Y )]= h̄ Rm(Hm) (19)

subject to boundary conditions

Um(Y )=Hm(Y )=0 (20)

where

R1,m(Um−1) =U ′′
m−1(Y )+ R

1+R
H ′
m−1

+(1−�m)
1

1+R
[(m−1)Y +1)−N ((n−1)Y +1]

R2,m(Hm−1)=H ′′
m−1(Y )− 2BR

2+R
(2Hm−1+U ′

m−1)
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where the prime denotes differentiation with respect to Y . Now the solutions of the mth-order
deformation Equations (18) and (19) for m�1 become

Um(Y )=�mUm−1(Y )+ h̄
∫ x

0

∫ x

0
R1,m(Um−1)d�d�+C1,1+YC2,1 (21)

Hm(Y )=�mHm−1(Y )+ h̄
∫ x

0

∫ x

0
R2,m(Hm−1)d�d�+C1,2+YC2,2 (22)

where the constants of integration Ci,1,Ci,2 (i=1,2) are determined by the boundary conditions
(20), and �m is

�m =
{
0, n�1

1, n>1

We now successively obtain

U1(Y )= h̄

6(R+1)
(Y 2−Y )[−Y +m(Y +1)+N (nY +n−Y +2)+2]

U2(Y )= h̄(h̄+1)

6(R+1)
(Y 2−Y )[−Y +m(Y +1)+N (nY +n−Y +2)+2]

...

H1(Y )=0

H2(Y ) = − BRh̄2

12(R2+3R+2)
(Y 2−Y )[−Y 2+3t+m(Y 2+Y −1)

+N (−Y 2+3Y +n(Y 2+Y −1)−1)−1]
...

Then the series solution to system (9)–(12) is

U (Y )=
+∞∑
n=0

anh̄Y
n, H(Y )=

+∞∑
n=0

bnh̄Y
n (23)

The dimensionless volume flow rate, Q, the dimensionless total heat rate added to the fluid, E ,
and the dimensionless total species rate added to the fluid are given, respectively, as

Q=
∫ 1

0

+∞∑
n=0

anh̄Y
n dY (24)

E=
∫ 1

0

(+∞∑
n=0

anh̄Y
n
)

�dY (25)

�=
∫ 1

0

(+∞∑
n=0

anh̄Y
n
)

�dY (26)
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4. RESULTS AND DISCUSSION

We note that the series solutions (23) contain the auxiliary parameter h̄. The validity of the method
is based on such an assumption that the series (16) and (17) converge at q=1. It is the auxiliary
parameter h̄ that ensures that this assumption can be satisfied. In general, by means of the so-called
h̄-curve, it is straightforward to choose a proper value of h̄, which ensures that the solution series
is convergent. We can investigate the influence of h̄ on the residual error defined as

Residual Error for U =U ′′(Y )+ R

1+R
H ′(Y )+ 1

1+R
[(m−1)Y +1)−N ((n−1)Y +1]

Residual Error for H =H ′′(Y )− 2BR

2+R
[2H+U ′(Y )]

Based on Figures 1 and 2, the valid regions of h̄ correspond to the line segments nearly parallel
to the horizontal axis. Figures 3 and 4 show the residual errors of the 10th-order HAM solutions

Figure 1. The h̄-curves obtained from the fifth-order HAM approximation solution for U in the case
m=0.6, n=0.3, N =2, B=1 and R=1.

Figure 2. The h̄-curves obtained from the fifth-order HAM approximation solution for H in the case
m=0.6, n=0.3, N =2, B=1 and R=1.
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Figure 3. Error of 10th-order HAM approximation solution for U in the case m=0.6, n=0.3, N =2,
B=1 and R=1, solid line: h̄=−1; dotted line: h̄=−0.6; dashed line: h̄=−1.4.

Figure 4. Error of 10th-order HAM approximation solution for H in the case m=0.6, n=0.3, N =2,
B=1 and R=1, solid line: h̄=−1; dotted line: h̄=−0.6; dashed line: h̄=−1.4.

for several values of h̄. Taking h̄=−1, the three-term approximate solutions for U and H are

U (Y ) ∼ (m−1−N+nN )BR2

60(R+1)2(R+2)
Y 5+ (1+N )BR2

12(R+1)2(R+2)
Y 4

− (2+m+2N+nN )BR2

18(R+1)2(R+2)
Y 3+ 1−m−nN+N

6(R+1)
Y 3

+ (1+m+N+nN )BR2

24(R+1)2(R+2)
Y 2− 1+N

2(R+1)
Y 2

+ (1−m+N−nN )BR2

360(R+1)2(R+2)
Y + 2+m+nN+2N

6(R+1)
Y
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H(Y ) ∼ (1−m+N−nN )B2R2

90(R+1)(R+2)2
Y 6− (1+N )B2R2

15(R+1)(R+2)2
Y 5

+ (1−m+N−nN )BR

12R2+3R+2
Y 4+ (2+m+2N+nN )B2R2

18(R+1)(R+2)2
Y 4

− (1+N )BR

3(R2+3R+2)
Y 3− (1+m+N+nN )B2R2

18(R+1)(R+2)2
Y 3

+ (2+m+2N+nN )BR

3(R2+3R+2)
Y 2− (1+m+N+nN )BR

12(R2+3R+2)
Y

+ (m+nN )B2mR2

90(R+1)(R+2)2
Y

Figure 5. Effects of vortex viscosity parameter on the velocity profiles.

Figure 6. Effects of vortex viscosity parameter on the microrotation profiles.
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Figure 7. Effects of buoyancy ratio on the velocity profiles.

Figure 8. Effects of buoyancy ratio on the microrotation profiles.

We plot in Figures 5 and 6 the velocity and microrotation profiles given by the fifth-order HAM
approximations for various vortex viscosity parameters R=0,0.5,1,1.5, and the case m=0.6,
n=0.3,N =2, B=1. The effect of the buoyancy ratio N on the velocity and microrotation profiles
obtained from the fifth-order HAM approximations is shown in Figures 7 and 8 for the case
m=0.6,n=0.3, R=1, B=1.

Figures 9–11 show the effects of the buoyancy ratio R and vortex viscosity parameter N on the
volume flow rate Q, total heat rate added to the fluid E and total species rate added to the fluid
�, respectively, for the case m=0.6,n=0.3 and B=1.

5. CONCLUSIONS

In this paper, we presented numerical solution of the boundary-value problem for free convection
based on the homotopy analysis method (HAM). The HAM solutions are in excellent agreement
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Figure 9. Effects of buoyancy ratio and vortex viscosity parameter on the volume flow rate.

Figure 10. Effects of buoyancy ratio and vortex viscosity parameter on the
total heat rate added to the fluid.

Figure 11. Effects of buoyancy ratio and vortex viscosity parameter on the
total species rate added to the fluid.
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with the solutions of Cheng [3]. We believe that the HAM can be a useful tool in the analysis of
more complicated problems.
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